

Abstract—This paper studies the influence that job
placement may have on scheduling performance, in the
context of massively parallel computing systems. A
simulation-based performance study is carried out, using
workloads extracted from real systems logs. The starting
point is a parallel system built around an n-ary k-tree
network and using well known scheduling algorithms
(FCFS and backfilling). We incorporate allocation policies
that try to assign to each job a contiguous network
partition, in order to improve communication
performance. These policies result in severe scheduling
inefficiency due to increased system fragmentation;
however, experiments show that, in those cases where the
exploitation of communication locality results in an
effective reduction of execution time, the achieved gains
more than compensates the scheduling inefficiency, thus
resulting in better overall performance.
Keywords—Scheduler Performance, Locality-Aware

Allocation Policies, Scheduling Techniques, Trace-Driven
Simulation.

I. INTRODUCTION
UPERCOMPUTER centres are usually designed to
provide computational resources to multiple users

and multiple applications. User jobs are sent to a
scheduling queue, where they wait until the resources
required by the job are available. These jobs may vary
from large parallel programs that need many processors,
to small sequential programs. The scheduler manages
system resources, taking into consideration different
policies that may restrict its use in terms of maximum
number of processors, maximum execution time, user or
group priorities, etc.
Generally, site performance is measured in terms of

the utilization of the system and the slowdown that the
jobs suffer while waiting in the queue until the required
resources become available. This is the reason why a
variety of scheduling policies [1] and allocation
algorithms [2] [3] [4] have been developed with the aim
of minimizing the number of nodes that remains idle,
and also the job waiting times. The scheduling policy
decides the order in which jobs are allowed to run.
Scheduling decisions may be based on different
variables, such as job size, user priority or system status.
Allocation algorithms map jobs onto available resources
(typically, processors). Locality-aware policies select
resources taking into account network characteristics,
such as its topology or the distance between processors.

1 The University of the Basque Country UPV/EHU, Department of
Computer Architecture and Technology,
(contact e-mail: ja-pascual@ehu.es, j.miguel@ehu.es).

The most commonly used scheduling policies are
FCFS (First-Come First-Serve) and FCFS+backfilling,
sometimes with variations. The FCFS discipline imposes
a strict order in the execution of jobs. These are ordered
by their arrival time and order violations are not
permitted, even when resources to execute the first job
are not available but there are enough free resources to
execute some other (or others) in the queue. The main
inconvenience of this policy is that it produces severe
system fragmentation because some processors can
remain idle during a long time due to the sequential
execution of jobs. This time could be used more
effectively running less-demanding jobs, thus achieving
a performance improvement.
With the goal of minimizing the effect of this strictly

sequential execution order, several strategies have been
developed [1] being the backfilling policy the most used
due to its easy implementation and proven benefits. This
policy is a variant of FCFS, based on the idea of
advancing jobs through the head of the queue. If some
queued jobs require a lower amount of processors than
the one at the head, we can execute them until the
resources required by the job at the head become
available. This way utilization of resources is improved
because both network fragmentation and job slowdown
decreases. The reader should note that, throughout this
paper, we will often use the word network to refer to the
complete parallel system.
Network fragmentation caused by scheduling

algorithms is known as external fragmentation [5]. But a
different kind of fragmentation appears in topologies
like meshes or tori when the partitions reserved to jobs
are organized as sub-meshes or sub-tori; for example, to
allocate a job composed by 4x3 processes, some
algorithms search for square sub-meshes, being 4x4 the
smallest size that can be used to run our job. In this case,
four processors reserved for the job will never used.
This effect is named internal fragmentation [5]. Some
job allocation algorithms try to minimize this effect.
Neither FCFS nor backfilling are allocation

algorithms, and they do not take into account the
placement of job processes to network nodes. In a
parallel system, application processes (running on
network nodes) communicate interchanging messages
(network packets). Depending on the communication
pattern of the application, and the way processes are
mapped onto the network, severe delays may appear due
to network contention; delays that result in longer
execution times. If we have several parallel jobs running
in the same network, each of them located randomly,
communication locality inside each job will not be
exploited; furthermore, messages from different

Effects of Job Placement on Scheduling
Performance

Technical Report EHU-KAT-IK-09-08

Jose Antonio Pascual1, Jose Miguel-Alonso1

S

applications will compete for network resources,
boosting contention. An effective exploitation of locality
results in smaller communication overheads, which
reflects in lower running times. Note that searching for
this locality is expensive in terms of scheduling time,
because jobs cannot be scheduled until contiguous
resources are available (and allocated), so that network
fragmentation increases.
A trade-off has to be found between the gains

attainable via exploitation of locality and the negative
effects of increasing fragmentation. This is precisely the
focus of this paper. We study only the placement in k-
ary n-tree topologies [14], but the tools and
methodology presented here could be extended to
topologies like rings, meshes or tori. Our final goal is to
demonstrate that the introduction in the schedulers of
locality-aware policies may provide important
performance improvements in systems with multiple
users and different applications.
The rest of the paper is organized as follows. In

section II we discuss some previous work on scheduling
and allocation policies. The simulation environment and
the workloads are described in Section III. In Section IV
we show and analyze the results of experiments
finishing the paper with some conclusions and future
lines of research.

II. RELATED WORK
Extensive research has been conducted in the area of

parallel job scheduling. Most works are focused on the
search of new scheduling policies that minimize job
waiting times, and on allocation algorithms that
minimize network fragmentation. In [1] authors analyze
a large variety of scheduling strategies; however, none
of them take into account virtual topologies of
applications (the logical way of arranging processes to
exploit communication locality) and network topology.
To our knowledge, only [5] describes a performance

study of parallel applications taking into account
locality-aware allocation schemes. The starting point of
this job is the fact that, in schedulers optimized for
machines with certain network topologies (they focus on
meshes and tori), allocation was always done in terms of
sub-meshes (or sub-tori). This policy optimizes
communication in terms of locality and non-
interference, but causes severe fragmentation, both
internal and external. Authors do not use scheduling
with backfilling, a technique that would partly reduce
this undesirable effect. However, they test a collection of
allocation strategies that sacrifice contiguity in order to
increase occupancy. They claim that the effect on
application performance attributable to the loss of
contiguity is low, and more than compensated by the
overall improvement in system utilization.
Our work differs from the cited one in several

important aspects. Previous research work shows that,
depending on the communication pattern of the
application, contiguous allocation provides remarkable
performance improvements [6]. Therefore, we do not
make extensive use of non-contiguity to increase
network utilization; instead, we incorporate backfilling
into the scheduler. Additionally, we focus on k-ary n-
trees, instead of meshes.

A review of schedulers in use in current
supercomputers, such as Maui [7] or SLURM [8], shows
that they do not implement contiguous allocation
strategies. Some of these provide methods for the system
administrator to develop their own strategies but, in
practice, this is rarely done. To our knowledge, the only
scheduler that tries to maintain locality is the one used
by the BlueGene/L supercomputers [9]. This is done in
order to reduce network fragmentation and decrease
network contention.

III. EXPERIMENTAL SET-UP
We have used simulation to carry out an analysis of

the impact that contiguous allocation strategies have on
scheduling performance. Our simulator implements two
different scheduling policies (FCFS with and without
backfilling), as well as two allocation algorithms, one of
them designed to search for contiguous resources k-ary
n-trees. The traces (workloads) used to feed the
simulations have been obtained from actual
supercomputers. They are available at the Parallel
Workload Archive [10].
The details of the scheduling algorithms used in the

experiments are as follows:

FCFS: In this policy, jobs are processed in strict order

of arrival and executed when the resources that they
need are available. Until this condition is reached,
the scheduling process is stopped, even if there are
enough free resources that could be allocated to
other waiting jobs.

Backfilling: This strategy permits the advance of jobs,
even when they are not at the head of the queue, in
such a way that network utilization increases, but
without delaying the execution of the jobs that
arrived first. The mechanism works as follows. A
reservation for the first job in the queue is done, if
enough resources are not currently available; the
reservation time is computed taking into account the
estimated termination times of currently running
jobs. Other waiting jobs demanding fewer resources
may be allowed to run while the first one is waiting.
When the time of the reservation is reached, the
waiting job has to run; if at that point resources are
not available, some running, advanced jobs must be
killed, because otherwise the reservation would be
violated, and to avoid the starvation of the first job.
Reservations are computed using a parameter called
User Estimated Runtime, which represents an
estimation of the job execution time ant that is
provided by the users [11]. In some cases the
scheduling system itself may provide this value,
based on estimations made over the historical
system logs [12].

Other scheduling methods have been proposed in the

literature, such as SJF (Shortest Jobs First) [1] in which
the jobs are sorted by their size instead of their arrival
time, and several variations of backfilling (see [1]).
However, the algorithm most commonly used in
productions systems is the EASY backfilling [1], also
known as aggressive backfilling. EASY performs

reservations only over the first job in the queue. This is
the policy that we use in this study.
Regarding the allocation algorithms, these have been

included in the study:

Non-contiguous: This policy performs a search of free

nodes making a sequential search over them,
ignoring the locality. This is the most used
technique in commercial systems, like the Cray
XT3/XT4 systems, that simply gets the first
available compute processors [13]. This scheme
provides a flat vision of the network, ignoring its
topological characteristics and the virtual topologies
of scheduled applications [4].

Contiguous: In this scheme job processes are allocated
to nodes maintaining them as close as possible. To
minimize, in a k-ary n-tree, the distance between
processes (nodes), we have defined the concept of
level of a job. This level is related to the number of
stages in the tree (n), and the number of ports per
switch (k up and k down) [14]. Stage 1 corresponds
to switches at the bottom of the tree, i.e., those
directly connected to compute nodes. Small jobs of
less than k nodes can be allocated a collection of
nodes attached to the same stage-1 switch, without
requiring communication using switches upper in
the tree. These are level-1 jobs. However, jobs
larger than k will require the utilization of switches
at stages 2, 3, etc.

Input:
int k, n; /* Parameters of the k-ary n-tree: ports, stages */
int N; /* Network size (number of compute nodes */
int x; /* Number of required nodes */

Output:
list node_list; /* List of assigned nodes */
 /* empty if contiguous allocation is not found */

Variables:
int level; /* Job level */
int level_size; /* Number of nodes at a given level */
int i; /* Counter to sweep nodes through the network */
int k; /* Counter to sweep nodes under the same level */

Begin
level = 1; level_size = 0;
while ((level ≤ n) && (x > level_size)) level_size = k^level;

empty(node_list);
i = 0; k = 0;
while (i < N) {
 while ((k < level_size) && (length(node_list) < x)) {
 if (available(i)) {
 add(i, node_list);
 if (length(node_list) == x) return(node_list);
 }
 i++; k++;
 }
 k = 0;
 empty(node_list);
}
return(node_list);

Figure 1: Contiguous allocation algorithm

Figure 1 shows the algorithm used to search for

contiguous nodes in a k-ary n-tree. The first loop
computes the level to which the job belongs, and the size

level_size of this level (the number of compute nodes
below a single switch located at stage level). After this
preliminary step, the search of free nodes is performed,
in groups of level_size nodes, because this way all the
allocated nodes would be contiguous, that is, connected
by the same switch. If the complete tree is traversed but
the necessary number of nodes is not found, the job
cannot be allocated. For example, in a 4-ary 3-tree
topology, if we need to allocate a 4-node job, we have to
find a completely empty stage-1 switch. For a 14-node
job (level-2) we need to find 14 free nodes all below the
same switch of the second stage of the tree.
As we stated before, throughout this work we evaluate

the scheduler performance using logs of workloads
extracted from real systems that are available thought
the PWA (Parallel Workload Archive). These logs have
information about the system as described in the SWF
format (Standard Workload Format) [15]. In this study
we have used mainly the following fields:

Arrival Time: The time at which a job arrives to the

system queue. Logs are sorted by this field.
Execution Time: The time that the job ran in the

system. This field is sometimes changed in order to
apply a speed-up factor, to simulate the
improvement of performance due to the exploitation
of communication locality.

Processors: Number of processors required by the job.
User Estimated Runtime: This information is used

only by the backfilling scheduling policy and
represents the time that the user estimates that the
job will need to finish.

Status: This field represents the status of a job. Jobs can
fail, or be cancelled by the user or by the system,
before or after they started the execution. In some
studies, jobs that are not completed successfully are
not included in the simulations, but we consider all
the jobs important because of the time they stay in
the system, delaying the execution of other jobs.

In our experiments, all times are measured in minutes.

We only use traces that provide User Estimate Runtime
information, because of the need of this parameter to
perform a backfilling scheduling policy. From those
available at the PWA, we have selected these three:

HPC2N (High Performance Computing Center). This is

a system located in Sweden, with 240 compute
nodes. It uses the Maui [7] scheduler. The workload
log contains information of 527,371 jobs.

LLNL (Lawrence Livermore National Laboratory)
Thunder. This is a Linux cluster composed by 4008
processors in which the nodes are connected by a
Quadrics network. The scheduler used in this
system is Slurm [8]. The log is composed by
128,662 job records.

SDSC (San Diego Supercomputer Center). This system
is an IBM SP located in San Diego, with 1152
processors. The scheduler in use is Catalina,
developed at SDSC, and performs backfilling. The
log contains information of 243,314 jobs.

We have simulated these workloads in k-ary n-trees
adapted to the system size. For the first trace we have
simulated a 4-ary 4-tree with 256 nodes. For the other
two we have used a 4-ary 6-tree with 4096 nodes. The
number of nodes of the topologies does not match with
the nodes of the traces, so we have considered that the
extra processors are not installed and they are ignored in
the simulation.

IV. EXPERIMENTS AND ANALYSIS OF RESULTS
In the experiments, we evaluate the performance of

scheduling and allocation algorithms in terms of these
two measurements:

Job waiting time. The time jobs spent in the queue.
Job total time. All the time spent in the system, which

includes the time waiting at the queue and the
execution time.

We have studied the four possible combinations of

scheduling and allocation policies. When using
contiguous allocation, a speed-up factor can be applied
to reduce the execution time. This is a parameter of the
simulation. For a given speed-up s, when a record in the
input workload states that a job ran for t minutes, in the
simulation we reduce this value to t·(1-s).
Note that adding a speed-up factor to a running time

reduces not only the application finish time, but also the
time that the jobs uses network resources; because of
this, the scheduling performance is increased too. We try
to find the point at which performance loss derived from
a restrictive allocation policy is compensated by the gain
derived from communication locality.
Results are depicted in Figures 3, 4 and 5. We

represent the averages of total time (waiting plus
running) and, in some cases, waiting time. In each graph
we can see two lines, one per allocation policy. For the
contiguous one we have tested several speed-up factors.
When this factor is 0 it means that, although we are
seeking locality, we are considering that using it does
not accelerate program execution. In all other cases we
accelerate the execution times reported in the logs using
the indicated speed-up factors. Obviously, we cannot use
speed-up factors with the non-contiguous allocation
policy, and for this reason the corresponding line is flat.
Before analyzing the results, let us pay attention to

Figure 2. It shows how the use of the contiguous
allocation policy is not cheap, and only can be
compensated if the execution speed-up due to the
improved communication locality is high. In the figure
we represent the waiting times for contiguous allocation,
always with null speed-up. Values are normalized, so
that a 1 represents the average job waiting time for the
non-contiguous policy. Results are clear: at zero speed-
up, for any scheduling policy, waiting times are much
worse when using contiguous allocation – from 7 to 100
times worse.

0

20

40

60

80

100

120

LLNL FCFS LLNL
Backfilling

SDSC
FCFS

SDSC
Backfilling

HPC2N
FCFS

HPC2N
Backfilling

Re
lat

ive
 w

ait
ing

 tim
e

Figure 2. Measured job waiting times for the contiguous allocation

algorithm. Values are normalized, so that 1 would be the time with
non-contiguous allocation.

The picture presented by Figure 2 is partial, and too

negative. Let us now pay attention to Figure 3, where
the HPC2N workload is studied in detail.
 In all scheduling-allocation combinations, results with

speed-up=0 are as appalling as just described. However,
when this value increases (that is, when applications
really run faster when allocated consecutive resources)
the picture changes. However, at speed-up values around
0.25 the picture changes, and the contiguous approach
shows its potential. Also, note that if the scheduler uses
backfilling, global system efficiency is higher (the
workload is processed faster), but the thresholds at
which contiguity is advantageous are about the same.
Figure 4 shows the results of the same experiments,

but from a different perspective. Only waiting times are
shown. A direct comparison with the previous figure
help us to determine which part of the total time is spent
in the queue, and which part is running time. For the
cases with small speed-ups, most of the time is waiting
time. When applying a speed-up factor running time is
reduced accordingly, but waiting time is also reduced.
In Figure 5 we have summarized results for workloads

LLNL and SDSC. To be succinct, and because the
qualitative analysis performed with HPC2N is still valid,
we only show results of total times for the backfilling
scheduling algorithm. Note that, as the range of values is
very wide, we have used a logarithmic scale in the X
axis. For the SDSC workload, the threshold at which
contiguous allocation starts being beneficial falls
between 0.25 and 0.30 (higher than that of HPC2N).
Similar, although slightly higher, values are required for
LLNL.
In [6] authors stated that significant speed-ups can be

obtained using the right application-to-network
mappings. In this work we have shown that searching
for these mapping incurs in severe penalties in terms of
waiting times at the scheduling queue. But we have also
shown that a speed-up threshold can be found at which
the beneficial effects of contiguous allocation schemes
surpass their cost. This threshold is different for each
machine-workload, falling around 0.25 – 0.3 for the
ones included in our study.

V. CONCLUSIONS AND FUTURE WORK
Most current supercomputing sites are built around

parallel systems shared between different users and
applications. The optimal use of resources is a complex

task, due to the heterogeneity in user and application
demands: some users run short sequential applications,
while others launch applications that use many nodes
and need weeks to be completed.
Supercomputers are expensive to build and maintain,

so that conscious administrators try to keep utilization as
high as possible. However, the efficient use of a parallel
computer cannot be measured only by the lack of unused
nodes. Other utilization characteristics, although not that
evident, may improve the general system performance.
In this paper we have studied the impact on

performance of allocation and scheduling policies. We
have compared two scheduling techniques in a k-ary n-
tree network topology, combined with two allocation
algorithms. Allocation algorithms that search for
contiguous resources have an important cost in terms of

system fragmentation, but also are able to accelerate the
execution of applications.
Experiments with actual workloads demonstrate that

the cost of contiguous allocation is very high, but when
the improvement of run time experienced by jobs is
around 25%-30%, this cost is compensated. Additional
accelerations would result in a more efficient
scheduling.
This study has focused only in tree-based networks.

The next step will be a performance study for other
topologies (k-ary n-cubes). In this work we have taken
application acceleration as a simulator parameter,
although we know that the real acceleration depends
heavily on the communication pattern of the
applications, and on the way processes are mapped onto
network nodes. For this reason, we plan to perform more

FCFS - Mean total time

0
500

1000
1500
2000
2500
3000
3500
4000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous

Backfilling - Mean total time

0
500

1000
1500
2000
2500
3000
3500
4000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous
Figure 3. Results of the simulation of the HPC2N workload. Mean Total Time (Wait Time + Execution Time) for FCFS and backfilling

scheduling policies at different execution speed-ups.

FCFS - Mean waiting time

0
500

1000
1500
2000
2500
3000
3500
4000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous

Backfilling - Mean waiting time

0
500

1000
1500
2000
2500
3000
3500
4000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous
Figure 4. Results of the simulation of the HPC2N workload. Mean Waiting Time for FCFS and backfilling scheduling policies at different

execution speed-ups.

SDSC

1
10

100
1000

10000
100000

1000000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous

LLNL

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous
Figure 5. Results of the experiments with the SDSC and LLNL workloads for a backfilling scheduling policy. Mean Total Time (Wait Time +

Execution Time) at different speed-ups. The scale of the X axis is logarithmic.

complex simulations, in which the actual interchanges of
messages are considered; to that end, we plan to use
INSEE [16].
We also plan to introduce relaxed versions of the

contiguous allocation algorithm, customized for k-ary n-
trees. Under some conditions, the allocator would search
for free nodes not only at the job level, but also one level
above – just one, in order to relax contiguity
requirements, but not too much.
Finally, we plan to implement our allocation

techniques into a real (commercial or free) scheduler in
order to make real measurements in production
environments.

VI. ACKNOWLEDGEMENTS
Work supported by the Ministry of Education and

Science of Spain (grant TIN2007-68023-C02-02) and by
the Basque Government (grant IT-242-07).

VII. REFERENCES
[1] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel

job scheduling - a status report,” Lecture Notes in Computer
Science Vol. 3277.

[2] Sandeep K.S. Gupta and Pradiip K. Srimani, “Subtorii Allocation
Strategies for Torus Connected Networks”. Algorithms and
Architectures for Parallel Processing, 1997. ICAPP 97., 1997 3rd
International Conference on Volume , Issue , 10-12 Dec 1997
Page(s):287 - 294

[3] Hyunseung Choo, Seong-Moo Yoo and Hee Yong Youn,
“Processor Scheduling and Allocation for 3D Torus
Multicomputer Systems”. IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 5, May 2000.

[4] Weizhen Mao, Jie Chen and William Watson III, “Efficient
Subtorus Processor Allocation in a Multi-Dimensional Torus”
High-Performance Computing in Asia-Pacific Region, 2005.
Proceedings. Eighth International Conference on Volume , Issue ,
30 Nov.-3 Dec. 2005 Page(s): 8 pp.

[5] Lo, V.;Windisch, K.J.; Wanqian Liu; Nitzberg, B.,
“Noncontiguous processor allocation algorithms for mesh-
connected multicomputers,” Parallel and Distributed Systems,
IEEE Transactions on Volume 8, Issue 7, Jul 1997 Page(s):712 -
726.

[6] Javier Navaridas, Jose Antonio Pascual, Jose Miguel-Alonso,
“Effects of Job and Task Placement on the Performance of
Parallel Scientific Applications”, Technical Report EHU-KAT-
IK-04-08. Department of Computer Architecture and
Technology, The University of the Basque Country.

[7] Cluster Resources, “Maui Admin Manual”. Available at URL
http://www.clusterresources.com/products/maui/docs/5.2nodeallo
cation.shtm

[8] Lawrence Livermore National Laboratory, “Simple Linux Utility
for Resource Management”. Available at
https://computing.llnl.gov/linux/slurm/

[9] Y. Aoyama et al., “Resource allocation and utilization in the Blue
Gene/L supercomputer”, IBM J. Res. & Dev. Vol. 49 No. 2/3
March.

[10] Parallel Workloads Archive, Available at
http://www.cs.huji.ac.il/labs/parallel/workload/

[11] Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, “Modeling user
runtime estimates”, Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP) June 2005, Cambridge,
Massachusetts, Lecture Notes in Computer Science, volume
3834.

[12] Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, “Backfilling using
system-generated predictions rather than user runtime estimates”,
IEEE Transactions on Parallel and Distributed Systems (TPDS),
June 2007.

[13] R Ansaloni, “The Cray XT4 Programming Environment”,
www.csc.fi/english/csc/courses/programming/environment.

[14] Fabrizio Petrini and Marco Vanneschi. “Performance Analysis of
Minimal Adaptive Wormhole Routing with Time-Dependent
Deadlock Recovery”. In Proceedings of the 11th International
Parallel Processing Symposium, IPPS'97, pages 589-595,
Geneva, Switzerland, April 1997.

[15] Steve J. Chapin, et al., “Benchmarks and Standards for the
Evaluation of Parallel Job Scheduler”, Lect. Notes Comput. Sci.
Vol. 1659, pp. 66-89.

[16] FJ Ridruejo, J Miguel-Alonso. “INSEE: an Interconnection
Network Simulation and Evaluation Environment”. Lecture
Notes in Computer Science, Volume 3648 / 2005 (Proc. Euro-Par
2005.

