
 

Abstract—This paper studies the influence that job 
placement may have on scheduling performance, in the 
context of massively parallel computing systems. A 
simulation-based performance study is carried out, using 
workloads extracted from real systems logs. The starting 
point is a parallel system built around an n-ary k-tree 
network and using well known scheduling algorithms 
(FCFS and backfilling). We incorporate allocation policies 
that try to assign to each job a contiguous network 
partition, in order to improve communication 
performance. These policies result in severe scheduling 
inefficiency due to increased system fragmentation; 
however, experiments show that, in those cases where the 
exploitation of communication locality results in an 
effective reduction of execution time, the achieved gains 
more than compensates the scheduling inefficiency, thus 
resulting in better overall performance.  
Keywords—Scheduler Performance, Locality-Aware 

Allocation Policies, Scheduling Techniques, Trace-Driven 
Simulation. 

I. INTRODUCTION 
UPERCOMPUTER centres are usually designed to 
provide computational resources to multiple users 

and multiple applications. User jobs are sent to a 
scheduling queue, where they wait until the resources 
required by the job are available. These jobs may vary 
from large parallel programs that need many processors, 
to small sequential programs. The scheduler manages 
system resources, taking into consideration different 
policies that may restrict its use in terms of maximum 
number of processors, maximum execution time, user or 
group priorities, etc. 
Generally, site performance is measured in terms of 

the utilization of the system and the slowdown that the 
jobs suffer while waiting in the queue until the required 
resources become available. This is the reason why a 
variety of scheduling policies [1] and allocation 
algorithms [2] [3] [4] have been developed with the aim 
of minimizing the number of nodes that remains idle, 
and also the job waiting times. The scheduling policy 
decides the order in which jobs are allowed to run. 
Scheduling decisions may be based on different 
variables, such as job size, user priority or system status. 
Allocation algorithms map jobs onto available resources 
(typically, processors). Locality-aware policies select 
resources taking into account network characteristics, 
such as its topology or the distance between processors. 
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The most commonly used scheduling policies are 
FCFS (First-Come First-Serve) and FCFS+backfilling, 
sometimes with variations. The FCFS discipline imposes 
a strict order in the execution of jobs. These are ordered 
by their arrival time and order violations are not 
permitted, even when resources to execute the first job 
are not available but there are enough free resources to 
execute some other (or others) in the queue. The main 
inconvenience of this policy is that it produces severe 
system fragmentation because some processors can 
remain idle during a long time due to the sequential 
execution of jobs. This time could be used more 
effectively running less-demanding jobs, thus achieving 
a performance improvement. 
With the goal of minimizing the effect of this strictly 

sequential execution order, several strategies have been 
developed [1] being the backfilling policy the most used 
due to its easy implementation and proven benefits. This 
policy is a variant of FCFS, based on the idea of 
advancing jobs through the head of the queue. If some 
queued jobs require a lower amount of processors than 
the one at the head, we can execute them until the 
resources required by the job at the head become 
available. This way utilization of resources is improved 
because both network fragmentation and job slowdown 
decreases. The reader should note that, throughout this 
paper, we will often use the word network to refer to the 
complete parallel system. 
Network fragmentation caused by scheduling 

algorithms is known as external fragmentation [5]. But a 
different kind of fragmentation appears in topologies 
like meshes or tori when the partitions reserved to jobs 
are organized as sub-meshes or sub-tori; for example, to 
allocate a job composed by 4x3 processes, some 
algorithms search for square sub-meshes, being 4x4 the 
smallest size that can be used to run our job. In this case, 
four processors reserved for the job will never used. 
This effect is named internal fragmentation [5]. Some 
job allocation algorithms try to minimize this effect. 
Neither FCFS nor backfilling are allocation 

algorithms, and they do not take into account the 
placement of job processes to network nodes. In a 
parallel system, application processes (running on 
network nodes) communicate interchanging messages 
(network packets). Depending on the communication 
pattern of the application, and the way processes are 
mapped onto the network, severe delays may appear due 
to network contention; delays that result in longer 
execution times. If we have several parallel jobs running 
in the same network, each of them located randomly, 
communication locality inside each job will not be 
exploited; furthermore, messages from different 
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applications will compete for network resources, 
boosting contention. An effective exploitation of locality 
results in smaller communication overheads, which 
reflects in lower running times. Note that searching for 
this locality is expensive in terms of scheduling time, 
because jobs cannot be scheduled until contiguous 
resources are available (and allocated), so that network 
fragmentation increases. 
A trade-off has to be found between the gains 

attainable via exploitation of locality and the negative 
effects of increasing fragmentation. This is precisely the 
focus of this paper. We study only the placement in k-
ary n-tree topologies [14], but the tools and 
methodology presented here could be extended to 
topologies like rings, meshes or tori. Our final goal is to 
demonstrate that the introduction in the schedulers of 
locality-aware policies may provide important 
performance improvements in systems with multiple 
users and different applications. 
The rest of the paper is organized as follows. In 

section II we discuss some previous work on scheduling 
and allocation policies. The simulation environment and 
the workloads are described in Section III. In Section IV 
we show and analyze the results of experiments 
finishing the paper with some conclusions and future 
lines of research. 

II. RELATED WORK 
Extensive research has been conducted in the area of 

parallel job scheduling. Most works are focused on the 
search of new scheduling policies that minimize job 
waiting times, and on allocation algorithms that 
minimize network fragmentation. In [1] authors analyze 
a large variety of scheduling strategies; however, none 
of them take into account virtual topologies of 
applications (the logical way of arranging processes to 
exploit communication locality) and network topology. 
To our knowledge, only [5] describes a performance 

study of parallel applications taking into account 
locality-aware allocation schemes. The starting point of 
this job is the fact that, in schedulers optimized for 
machines with certain network topologies (they focus on 
meshes and tori), allocation was always done in terms of 
sub-meshes (or sub-tori). This policy optimizes 
communication in terms of locality and non-
interference, but causes severe fragmentation, both 
internal and external. Authors do not use scheduling 
with backfilling, a technique that would partly reduce 
this undesirable effect. However, they test a collection of 
allocation strategies that sacrifice contiguity in order to 
increase occupancy. They claim that the effect on 
application performance attributable to the loss of 
contiguity is low, and more than compensated by the 
overall improvement in system utilization. 
Our work differs from the cited one in several 

important aspects. Previous research work shows that, 
depending on the communication pattern of the 
application, contiguous allocation provides remarkable 
performance improvements [6]. Therefore, we do not 
make extensive use of non-contiguity to increase 
network utilization; instead, we incorporate backfilling 
into the scheduler. Additionally, we focus on k-ary n-
trees, instead of meshes. 

A review of schedulers in use in current 
supercomputers, such as Maui [7] or SLURM [8], shows 
that they do not implement contiguous allocation 
strategies. Some of these provide methods for the system 
administrator to develop their own strategies but, in 
practice, this is rarely done. To our knowledge, the only 
scheduler that tries to maintain locality is the one used 
by the BlueGene/L supercomputers [9]. This is done in 
order to reduce network fragmentation and decrease 
network contention.  

III. EXPERIMENTAL SET-UP 
We have used simulation to carry out an analysis of 

the impact that contiguous allocation strategies have on 
scheduling performance. Our simulator implements two 
different scheduling policies (FCFS with and without 
backfilling), as well as two allocation algorithms, one of 
them designed to search for contiguous resources k-ary 
n-trees. The traces (workloads) used to feed the 
simulations have been obtained from actual 
supercomputers. They are available at the Parallel 
Workload Archive [10]. 
The details of the scheduling algorithms used in the 

experiments are as follows: 
 
FCFS: In this policy, jobs are processed in strict order 

of arrival and executed when the resources that they 
need are available. Until this condition is reached, 
the scheduling process is stopped, even if there are 
enough free resources that could be allocated to 
other waiting jobs.  

Backfilling: This strategy permits the advance of jobs, 
even when they are not at the head of the queue, in 
such a way that network utilization increases, but 
without delaying the execution of the jobs that 
arrived first. The mechanism works as follows. A 
reservation for the first job in the queue is done, if 
enough resources are not currently available; the 
reservation time is computed taking into account the 
estimated termination times of currently running 
jobs. Other waiting jobs demanding fewer resources 
may be allowed to run while the first one is waiting. 
When the time of the reservation is reached, the 
waiting job has to run; if at that point resources are 
not available, some running, advanced jobs must be 
killed, because otherwise the reservation would be 
violated, and to avoid the starvation of the first job. 
Reservations are computed using a parameter called 
User Estimated Runtime, which represents an 
estimation of the job execution time ant that is 
provided by the users [11]. In some cases the 
scheduling system itself may provide this value, 
based on estimations made over the historical 
system logs [12]. 

 
Other scheduling methods have been proposed in the 

literature, such as SJF (Shortest Jobs First) [1] in which 
the jobs are sorted by their size instead of their arrival 
time, and several variations of backfilling (see [1]). 
However, the algorithm most commonly used in 
productions systems is the EASY backfilling [1], also 
known as aggressive backfilling. EASY performs 



reservations only over the first job in the queue. This is 
the policy that we use in this study. 
Regarding the allocation algorithms, these have been 

included in the study: 
 
Non-contiguous: This policy performs a search of free 

nodes making a sequential search over them, 
ignoring the locality. This is the most used 
technique in commercial systems, like the Cray 
XT3/XT4 systems, that simply gets the first 
available compute processors [13]. This scheme 
provides a flat vision of the network, ignoring its 
topological characteristics and the virtual topologies 
of scheduled applications [4]. 

Contiguous: In this scheme job processes are allocated 
to nodes maintaining them as close as possible. To 
minimize, in a k-ary n-tree, the distance between 
processes (nodes), we have defined the concept of 
level of a job. This level is related to the number of 
stages in the tree (n), and the number of ports per 
switch (k up and k down) [14]. Stage 1 corresponds 
to switches at the bottom of the tree, i.e., those 
directly connected to compute nodes. Small jobs of 
less than k nodes can be allocated a collection of 
nodes attached to the same stage-1 switch, without 
requiring communication using switches upper in 
the tree. These are level-1 jobs. However, jobs 
larger than k will require the utilization of switches 
at stages 2, 3, etc. 

 
 

Input:  
int k, n; /* Parameters of the k-ary n-tree: ports, stages */ 
int N; /* Network size (number of compute nodes */ 
int x; /* Number of required nodes */ 
 
Output:  
list node_list; /* List of assigned nodes */ 
                      /* empty if contiguous allocation is not found */ 
 
Variables: 
int level; /* Job level */ 
int level_size; /* Number of nodes at a given level */ 
int i; /* Counter to sweep nodes through the network */ 
int k; /* Counter to sweep nodes under the same level */ 
 
Begin 
level = 1; level_size = 0; 
while ((level ≤ n) && (x > level_size)) level_size = k^level; 
 
empty(node_list); 
i = 0; k = 0; 
while (i < N) { 
    while ((k < level_size) && (length(node_list) < x)) { 
        if (available(i)) { 
            add(i, node_list); 
            if (length(node_list) == x) return(node_list); 
        } 
        i++; k++; 
    } 
    k = 0; 
    empty(node_list); 
} 
return(node_list); 
 

Figure 1: Contiguous allocation algorithm 
 
Figure 1 shows the algorithm used to search for 

contiguous nodes in a k-ary n-tree. The first loop 
computes the level to which the job belongs, and the size 

level_size of this level (the number of compute nodes 
below a single switch located at stage level). After this 
preliminary step, the search of free nodes is performed, 
in groups of level_size nodes, because this way all the 
allocated nodes would be contiguous, that is, connected 
by the same switch. If the complete tree is traversed but 
the necessary number of nodes is not found, the job 
cannot be allocated. For example, in a 4-ary 3-tree 
topology, if we need to allocate a 4-node job, we have to 
find a completely empty stage-1 switch. For a 14-node 
job (level-2) we need to find 14 free nodes all below the 
same switch of the second stage of the tree. 
As we stated before, throughout this work we evaluate 

the scheduler performance using logs of workloads 
extracted from real systems that are available thought 
the PWA (Parallel Workload Archive). These logs have 
information about the system as described in the SWF 
format (Standard Workload Format) [15]. In this study 
we have used mainly the following fields: 
 
Arrival Time: The time at which a job arrives to the 

system queue. Logs are sorted by this field. 
Execution Time: The time that the job ran in the 

system. This field is sometimes changed in order to 
apply a speed-up factor, to simulate the 
improvement of performance due to the exploitation 
of communication locality. 

Processors: Number of processors required by the job. 
User Estimated Runtime: This information is used 

only by the backfilling scheduling policy and 
represents the time that the user estimates that the 
job will need to finish. 

Status: This field represents the status of a job. Jobs can 
fail, or be cancelled by the user or by the system, 
before or after they started the execution. In some 
studies, jobs that are not completed successfully are 
not included in the simulations, but we consider all 
the jobs important because of the time they stay in 
the system, delaying the execution of other jobs. 

 
In our experiments, all times are measured in minutes. 

We only use traces that provide User Estimate Runtime 
information, because of the need of this parameter to 
perform a backfilling scheduling policy. From those 
available at the PWA, we have selected these three: 
 
HPC2N (High Performance Computing Center).  This is 

a system located in Sweden, with 240 compute 
nodes. It uses the Maui [7] scheduler. The workload 
log contains information of 527,371 jobs. 

LLNL (Lawrence Livermore National Laboratory) 
Thunder. This is a Linux cluster composed by 4008 
processors in which the nodes are connected by a 
Quadrics network. The scheduler used in this 
system is Slurm [8]. The log is composed by 
128,662 job records. 

SDSC (San Diego Supercomputer Center). This system 
is an IBM SP located in San Diego, with 1152 
processors. The scheduler in use is Catalina, 
developed at SDSC, and performs backfilling. The 
log contains information of 243,314 jobs. 

 



We have simulated these workloads in k-ary n-trees 
adapted to the system size. For the first trace we have 
simulated a 4-ary 4-tree with 256 nodes. For the other 
two we have used a 4-ary 6-tree with 4096 nodes. The 
number of nodes of the topologies does not match with 
the nodes of the traces, so we have considered that the 
extra processors are not installed and they are ignored in 
the simulation. 

IV. EXPERIMENTS AND ANALYSIS OF RESULTS 
In the experiments, we evaluate the performance of 

scheduling and allocation algorithms in terms of these 
two measurements: 
 
Job waiting time. The time jobs spent in the queue. 
Job total time. All the time spent in the system, which 

includes the time waiting at the queue and the 
execution time. 

 
We have studied the four possible combinations of 

scheduling and allocation policies. When using 
contiguous allocation, a speed-up factor can be applied 
to reduce the execution time. This is a parameter of the 
simulation. For a given speed-up s, when a record in the 
input workload states that a job ran for t minutes, in the 
simulation we reduce this value to t·(1-s). 
Note that adding a speed-up factor to a running time 

reduces not only the application finish time, but also the 
time that the jobs uses network resources; because of 
this, the scheduling performance is increased too. We try 
to find the point at which performance loss derived from 
a restrictive allocation policy is compensated by the gain 
derived from communication locality.  
Results are depicted in Figures 3, 4 and 5. We 

represent the averages of total time (waiting plus 
running) and, in some cases, waiting time. In each graph 
we can see two lines, one per allocation policy. For the 
contiguous one we have tested several speed-up factors. 
When this factor is 0 it means that, although we are 
seeking locality, we are considering that using it does 
not accelerate program execution. In all other cases we 
accelerate the execution times reported in the logs using 
the indicated speed-up factors. Obviously, we cannot use 
speed-up factors with the non-contiguous allocation 
policy, and for this reason the corresponding line is flat. 
Before analyzing the results, let us pay attention to 

Figure 2. It shows how the use of the contiguous 
allocation policy is not cheap, and only can be 
compensated if the execution speed-up due to the 
improved communication locality is high. In the figure 
we represent the waiting times for contiguous allocation, 
always with null speed-up. Values are normalized, so 
that a 1 represents the average job waiting time for the 
non-contiguous policy. Results are clear: at zero speed-
up, for any scheduling policy, waiting times are much 
worse when using contiguous allocation – from 7 to 100 
times worse.  
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Figure 2. Measured job waiting times for the contiguous allocation 

algorithm. Values are normalized, so that 1 would be the time with 
non-contiguous allocation. 

 
The picture presented by Figure 2 is partial, and too 

negative. Let us now pay attention to Figure 3, where 
the HPC2N workload is studied in detail. 
 In all scheduling-allocation combinations, results with 

speed-up=0 are as appalling as just described. However, 
when this value increases (that is, when applications 
really run faster when allocated consecutive resources) 
the picture changes. However, at speed-up values around 
0.25 the picture changes, and the contiguous approach 
shows its potential. Also, note that if the scheduler uses 
backfilling, global system efficiency is higher (the 
workload is processed faster), but the thresholds at 
which contiguity is advantageous are about the same. 
Figure 4 shows the results of the same experiments, 

but from a different perspective. Only waiting times are 
shown. A direct comparison with the previous figure 
help us to determine which part of the total time is spent 
in the queue, and which part is running time. For the 
cases with small speed-ups, most of the time is waiting 
time. When applying a speed-up factor running time is 
reduced accordingly, but waiting time is also reduced. 
In Figure 5 we have summarized results for workloads 

LLNL and SDSC. To be succinct, and because the 
qualitative analysis performed with HPC2N is still valid, 
we only show results of total times for the backfilling 
scheduling algorithm. Note that, as the range of values is 
very wide, we have used a logarithmic scale in the X 
axis. For the SDSC workload, the threshold at which 
contiguous allocation starts being beneficial falls 
between 0.25 and 0.30 (higher than that of HPC2N). 
Similar, although slightly higher, values are required for 
LLNL. 
In [6] authors stated that significant speed-ups can be 

obtained using the right application-to-network 
mappings. In this work we have shown that searching 
for these mapping incurs in severe penalties in terms of 
waiting times at the scheduling queue. But we have also 
shown that a speed-up threshold can be found at which 
the beneficial effects of contiguous allocation schemes 
surpass their cost. This threshold is different for each 
machine-workload, falling around 0.25 – 0.3 for the 
ones included in our study.  

V. CONCLUSIONS AND FUTURE WORK 
Most current supercomputing sites are built around 

parallel systems shared between different users and 
applications. The optimal use of resources is a complex 



task, due to the heterogeneity in user and application 
demands: some users run short sequential applications, 
while others launch applications that use many nodes 
and need weeks to be completed.  
Supercomputers are expensive to build and maintain, 

so that conscious administrators try to keep utilization as 
high as possible. However, the efficient use of a parallel 
computer cannot be measured only by the lack of unused 
nodes. Other utilization characteristics, although not that 
evident, may improve the general system performance. 
In this paper we have studied the impact on 

performance of allocation and scheduling policies. We 
have compared two scheduling techniques in a k-ary n-
tree network topology, combined with two allocation 
algorithms. Allocation algorithms that search for 
contiguous resources have an important cost in terms of 

system fragmentation, but also are able to accelerate the 
execution of applications. 
Experiments with actual workloads demonstrate that 

the cost of contiguous allocation is very high, but when 
the improvement of run time experienced by jobs is 
around 25%-30%, this cost is compensated. Additional 
accelerations would result in a more efficient 
scheduling. 
This study has focused only in tree-based networks. 

The next step will be a performance study for other 
topologies (k-ary n-cubes). In this work we have taken 
application acceleration as a simulator parameter, 
although we know that the real acceleration depends 
heavily on the communication pattern of the 
applications, and on the way processes are mapped onto 
network nodes. For this reason, we plan to perform more 
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Figure 3. Results of the simulation of the HPC2N workload. Mean Total Time (Wait Time + Execution Time) for FCFS and backfilling 

scheduling policies at different execution speed-ups. 
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Figure 4. Results of the simulation of the HPC2N workload. Mean Waiting Time for FCFS and backfilling scheduling policies at different 

execution speed-ups. 
  

SDSC

1
10

100
1000

10000
100000

1000000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous  

LLNL

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5
Speed-up

Tim
e (

mi
n)

Non Contiguous Contiguous  
Figure 5.  Results of the experiments with the SDSC and LLNL workloads for a backfilling scheduling policy. Mean Total Time (Wait Time + 

Execution Time) at different speed-ups. The scale of the X axis is logarithmic. 
 



complex simulations, in which the actual interchanges of 
messages are considered; to that end, we plan to use 
INSEE [16].  
We also plan to introduce relaxed versions of the 

contiguous allocation algorithm, customized for k-ary n-
trees. Under some conditions, the allocator would search 
for free nodes not only at the job level, but also one level 
above – just one, in order to relax contiguity 
requirements, but not too much. 
Finally, we plan to implement our allocation 

techniques into a real (commercial or free) scheduler in 
order to make real measurements in production 
environments. 
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